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Nonrandom features of pseudorandom number generators are usually regarded as defects 
which may be minimized by improving the algorithms or resorting to larger computers. There 
are, however, certain elements of order which cannot be avoided even on digital devices of 
arbitrarily large capacity. For instance, on an N-state machine, pseudorandom number 
generators will terminate on fixed points or fall into loops after approximately fi steps. 
Combinatorial arguments then can be used to show that for any given algorithm and any 
finite device it is highly improbable that there are more than three or four distinct terminal 
loops. All pseudorandom sequences merging into these loops can be traced backwards to their 
initial numbers; and the resulting pattern of %ncestor numbers” can be charted in detail for 
any computer, even for noninvertible algorithms. The conflicting requirements of randomness 
and finite numerical precision lead to an ordered distribution of the set of initial numbers. In 
this sense neither the initial nor the final states of a simulation of chaotic behavior can ever be 
random. The “few loop” constraint could generate patterns of self-organization in non- 
equilibrium systems. Experimental evidence from the hysteresis of Ewing arrays supports this 
conjecture. 

1. INTRODUCTION 

Since the original work of Hopf and Krylov there has been a growing interest in 
applying deterministic simulations of random processes, such as mixing transfor- 
mations, to problems in statistical physics [ 1, 21. Computer modeling has played an 
important role in interpolating between the tentative theoretical schemes-for 
instance the iteration of quadratic maps on the interval [3]-and the experimental 
situations which they are supposed to represent. 
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The successive links in the chain 

395 

random deterministic computer physical * tt * 
process simulation modeling system (1.1) 

must, however, be treated with the utmost care: “... pseudo-random numbers form the 
backbone of computer simulation and Monte Carlo analysis, yet there are essentially 
no known theorems which make explicit the sense in which pseudo-random numbers 
are replacements for random numbers” [4]. Moreover, the realization of any 
pseudorandom number algorithm on a computer is basically an experimental problem 
since digital networks are restricted to processing finite sets whereas the theoretical 
schemes promise random behavior only on sets of positive, nonatomic measure. 
Finally, in order to ensure that the discrete models give a faithful representation of 
the behavior of the associated continuous systems, it is also necessary to check the 
numerical criteria of consistency, convergence, and stability [5, 61. 

Fortunately there are examples which show that the entire sequence (1.1) can in 
fact be realized. If the physical systems are either harmonic oscillators or cascades of 
biased product detectors, their stochastic behavior can be simulated with Chebyshev 
mixing transformations [7, 81. Extensive trials have also confirmed that the 
Chebyshev mixing can be approximated with excellent statistical fidelity on a wide 
variety of digital devices. Similar results have been obtained for other mixing 
processes which are conjugate transforms of the Chebyshev polynomials [9]. In all 
cases the computer-generated sequences continue to imitate the “right” pseudorandom 
features even after the cumulative roundoff and truncation errors have been amplified 
by the iterations to the point where they dominate the numerical aspects of the 
calculations. Here and subsequently, a sequence of digits qualifies as being 
pseudorandom if it satisfies the usual criteria involving equidistributivity and 
normality; and has auto- and cross-correlations equivalent to those of white noise 
[7, IO]. Computer simulations of these mixing transformations can also be adapted 
to imitate various physical aspects of irreversible and disordered systems: ergodicity, 
fading memory (relaxation), instability, and the irreversible dispersal of any set of 
positive measure throughout the domains of the mixing processes [2, 11, 121. 

In general the pseudorandom sequences generated by mixing transformations can 
be visualized as extending indefinitely far into the “past” and the “future” without 
ever encountering a repetition. For instance, in the Chebyshev case the set of points 
which will eventually recur under iteration-the cyclic points--can be enumerated 
explicitly. This set is dense, but countably infinite, and therefore of measure zero [7, 
Eqs. (3.7a)-(3.7c)]. Thus if a Chebyshev mixing sequence is constructed starting 
with any number, the probability of having selected one of the pseudorandom but 
periodic sequences is zero. It is precisely this perpetual wandering which cannot be 
imitated on any tinite digital device because every computer-generated sequence 
necessarily terminates in a cycle. Specifically, for any mapping J: xi + xi of a finite 
set of N distinct objects, x,, x2 ,..., x,, to itself, each sequence of iterates 
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must contain at least two identical elements, say A”(x,) and M’(x,), whenever 
m > A’, irrespective of the choice of the initial “seed” xi (pigeonhole principle [ 131). 
In computing terminology this implies that (1.2) consists of a “free-running” subse- 
quence M(xi),..., Af-‘(x,) containing no repetitions, and a contiguous subsequence 
.&(xJ,...,J’(xJ which constitutes a terminal loop with 1 -f distinct elements. 
Physically this means simply that all iterative processes on finite sets eventually 
degenerate into clocks. 

These obvious distinctions between infinite strings of nonrecurrent numbers and 
sequences which ultimately become periodic have drastic consequences. For if the 
computer-generated sequences are also intended to imitate chaotic behavior, we 
encounter the paradoxical situation that it is precisely the simulation of disorder 
which imposes a high degree of order on the initial and final states of any 
pseudorandom algorithm. In Section 2 we analyze this point by introducing a 
combinatorial lemma concerning the likelihood of coincidences in random sequences. 
The results enable us to show that for any pseudorandom number algorithm and any 
digital network it is highly improbable that the sequences (1.2) will terminate in more 
than three or four distinct terminal cycles regardless of the choice of the initial seed 
xi. Furthermore, the distribution of the numbers on all these terminal loops cannot be 
completely uncorrelated. 

The limited ability of computers to simulate pseudorandom behavior also 
influences another aspect of the structure of the sequences (1.2). Observe that for any 
mapping A, it is possible, at least in principle, to trace back all of the preimages, or 
ancestor points, of any element. For instance, the quadratic Chebyshev polynomial 
C,(x) =x2 - 2 is mixing on the interval [-2,2] and noninvertible, but the entire set 
of preimages for any element x can be explicitly constructed with the help of the 
simple scheme [7, (6.2)] 
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If this fan-out of preimages is followed on a computer, the finite precision of the 
calculations leads to a progressive extinction of all ancestral lines. In other words, 
each machine-generated sequence (1.2) has a definite “age” corresponding to the 
number of iterations linking its “oldest” starting element (i.e., a number having no 
preimages on the computer) to &(x), where the sequence merges into a terminal 
cycle. In Section 4 we discuss this behavior in quantitative detail using the 
Chebyshev mixing as a specific example. We shall see that the statistical properties of 
the entire set of sequences (1.2) permit us to assign an average age to the mixing so 
that the Chebyshev simulations in effect display a time evolution. One consequence is 
that computer simulations of mixing processes cannot be strictly ergodic. 

All results of this kind concerning the existence of latent, ineluctable patterns of 
order may be interpreted in at least two different ways. If one is mainly interested in 
perfecting the computer simulations of chaotic behavior, then the essential precaution 
which emerges from this work is to rely only on those portions of the machine- 
generated sequences (1.2) that are “free-running” and not too “young’‘-in other 
words, avoid the structure inherent in the initial and final states. With these 
safeguards most of the existing schemes for modeling chaos are left intact, and one 
can wring out still more of the latent correlations. On the other hand, the appearance 
of patterns of order in pseudorandom processes can also reflect the actual behavior of 
physical systems-particularly the tendency for self-organization in nonequilibrium 
systems. We shall see in Section 3 that the long-time or asymptotic response of some 
large scale hysteresis systems corresponds precisely to the limiting behavior predicted 
by the “few loop” principle. In this sense the study of the terminal states of discrete 
finite systems evolving under pseudorandom laws is a useful extension of the scope of 
statistical physics. We also touch on some implications for encryption and infor- 
mation compression in Section 3. 

2. THE FEW LOOP PRINCIPLE 

A. The Double Birthday Lemma 

A random string of n binary numbers is said to contain a maximal, or irreducible, 
amount of information because approximately n bits of information are required to 
specify its construction [ 14, 151. In contrast, a pseudorandom string generated by a 
given mapping M contains relatively little information since in principle the entire 
string is completely determined by the initial number. For example, if one programs 
the algorithm A: x I--+ x2 - 2 (the simple mixing transformation C,), then all 
successive elements M”(xJ, m = 1, 2,..., are determined by the choice of x,. Now in 
practical computations the actual values of the numbers Mm(xi) will be affected by 
cumulative roundoff and truncation errors, but this does not alter the basic infor- 
mation mismatch between random processes and pseudorandom simulations (cf. [ 15, 
Theorem 2 1.41). The equivalence of computational complexity, information content, 
and degree of disorder is based on the familiar notion that an n-bit string of random 
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numbers ought to pass at least n tests of randomness. A pseudorandom sequence of 
course is likely to fail at least some of these tests. Every such failure is indicative of a 
trace of regularity, and as we shall see, a suitable series of randomness tests applied 
to computer models of chaos can actually be used to infer the existence of pervasive 
patterns of order. To this end, we derive a combinatorial result related to the well- 
known “birthday” problem [ 161. 

LEMMA [ 171. From an urn containing N distinguishable objects, observer 9 
draws one object at a time, at random with replacement, until a repetition occurs. A 
similar set of draws is made by another observer 9. The probability Pi that 9 and 
9 have selected at least one object in common is then given by 

(2. la) 

and 
P; = + + & m + (1/9N) + O( 1/N3”). (2. lb) 

ProoJ: Suppose 54 has drawn i distinct objects, and 9 has drawn j distinct 
objects; then there are ijN!/(N - i - j)! distinct sequences of draws in which 5%’ and 
L?? have not selected any object in common. Since 9 and 9 together have made 
i + j + 2 draws, the corresponding total number of possible sequences is Nit’+‘. 
Therefore, if pi is the probability that .5P and 9 have not selected any object in 
common, then Pk is given by 

. . 
1 -P;=p;=N! v 

i+xN (N-i-y)! Ni+j+z’ (2.2) 

The summation terminates at the indicated 
that L@ and .J$ must have made a common 
[ 13]!). 

limit because for i + j > N it is certain 
choice (pigeonhole principle once again 

With k = i + j, (2.2) can be rewritten as 

N (k-1 

pl=N! r c i(k-ii) 
k=Z I 

([N-k]!Nk+‘) 
i=l 

JN-l)! N 
6 & (&!l$+l- 

The last expression can be simplified: 

N (k*- 1)k N-l 

k;. (N-k)!@+1 = k;. ck2 - ‘1 
1 1 N2 - 1 

(N-k)! Nk -(N-k- l)! Nk+’ + NN 1 
N-l 2 N (k-1)2-1 N2-1 

= kzo (kk,:Nk - kzl (N-k)!Nk + NN 
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N-l 

C-S 
2k- 1 1 N2 --- -2N +N2-1 

ke, (N-k)! Nk N! NN NN 

(2.4) 

By similar means the remaining linear term in k in (2.4) can also be removed: 

N 2k- 1 N-l 

k;. (N - k)! Nk = 2N kzo 

1 
(N--:)!N’-(N-k- l)!Nk+’ I 

2N N 1 
+F- kzo (N-k)! Nk 

N 

=(NTl)!- kzo (N--:)!N’ 

2 1 CN” -- 
=(N- l)! NN k$O k! ’ 

By combining (2.2)-(2.5) we obtain the first part of the lemma, Eq. (2.la). Since the 
sum in (2.la) can be expressed in terms of the incomplete gamma function, 

standard asymptotic results, such as [ 181 

and Stirling’s approximation may be used to reduce (2.la) to (2.lb). 
The numerical comparisons given in Table I indicate that the O(Nm3”) terms in 

TABLE I 

Exact and Approximate Values of the Coincidence Probability P$ 

N Pk exact, Eq. (2. la) PL, approximate, Eq. (2.1 b) 

10 0.144 337 
lo2 0.688 683 
10’ 0.673 384 
10” 0.688 768 
lo5 0.667 329 
IO6 0.666 816 
10’ 0.666 133 
03 5 

0.743 833 
0.688 663 
0.673 383 
0.688 766 
0.667 328 
0.666 875 
0.666 732 

- 
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(2.lb) are negligible for NT 10. An auxiliary calculation also yields an estimate of 
the average number of draws made by 9 and LS in order to obtain a match. This 
number can be inferred from the ratio 

F (t)= (N- l)! legal (P- 1)k 
N 

6~; keo (N - k)! Nk+ ’ ’ (2.6) 

where [tly”‘] is the largest integer contained in tN ‘I*. By (2.3), this is the conditional 
probability that the total number of distinct objects drawn by ~4’ and 9 does not 
exceed tN”*, given that no objects were selected in common. When N 7 lo*, the ratio 
FN(t) is essentially independent of N, so it suffices to consider the asymptotic approx- 
imation FN(t) +N *, F(t). This function is plotted in Fig. 1 and partially tabulated in 
Table II. Note that most of the contributions to the sum (2.3) originate in the narrow 
range 1.03 ? t ? 2.79, and that the median value F(t) w 50% occurs at t w 1.83. 
Consequently, the median of the sum of the draws made by LP and 9 in the event 
that both find repetitions without selecting a common object is 

(i + j) N 1.83N”*. (2.7a) 

An independent calculation of the median of the sum of the draws made by LZ and 9 
in the case that both find repetitions but without any coincidence constraints leads to 
a somewhat higher value [ 19, 351 

(i + j) N 2.44NL’*. (2.7b) 

A distributional analysis of the urn drawing model also confirms the intuitive expec- 

.90 

.80 

.70 

0 .6 1.2 I.8 , 2.4 3.0 3.6 4.2 

FIG. I. Contributions to the noncoincidence probability pN. ’ The graph indicates that most of the 
contribution to the sum (2.3) originates in the narrow range I.ON”’ 2 k? 2.8N”*. The variable t is 
defined in Eq. (2.6). 
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TABLE II 

Values of the Ratio F(r) 

& 0.40 0.003 0.48 0.006 0.53 0.009 0.51 0.012 0.61 0.015 0.64 0.018 0.69 0.024 0.71 0.027 

t 0.73 0.82 0.89 1.00 1.09 1.17 1.24 1.30 
F(t) 0.030 0.045 0.060 0.090 0.120 0.150 0.180 0.210 

t 1.37 1.48 1.59 1.70 1.80 1.90 2.01 2.13 

F(t) 0.240 0.300 0.360 0.420 0.480 0.540 0.600 0.660 

t 2.25 2.39 2.56 2.79 2.86 2.95 3.06 3.18 
F(t) 0.721 0.781 0.841 0.901 0.912 0.931 0.950 0.962 

t 3.38 3.50 3.70 3.80 3.90 4.21 4.74 5.00 
F(t) 0.980 0.986 0.992 0.994 0.996 0.999 0.9998 0.99996 

Note. F(t) z FN(t), N % 1, cf. (2.6); the exact values of FN(t) differ from the table entries by less than 
lo-) for N = lO4. 

tation that longer series of draws increase the probability of finding coincidences. For 
instance, given a series of draws by S’ and S-each terminating in a repetition as in 
the Lemma-in about 7.6% of the cases the sum of the draws will exceed the 
estimate (2.7a) by a factor of two, i.e., 

(i + j) - 3.6N”‘. (2.7~) 

In these “long” draws the probability of obtaining at least one coincidence between 
the objects drawn by Z? and 9 has risen to 94%. 

Of course if 9 and 9 sample from an urn as indicated in the Lemma it is also 
possible for multiple coincidences to occur between the two series of draws. Let p: be 
the probability that S’ and 9 have selected exactly m distinct objects in common. 
Then we already know that 

p; = f + O(N- “2). (2.8) 

The single and higher order coincidences can then be obtained from expressions 
analogous to (2.2). In particular the next four probabilities are [ 191 

p; = -& + o(N-(++Q)), p,: = + + o(N-‘++“2’), 

p; = * + O(N4f&3’), p; = -& + O(N-‘t+“‘), (2.9) 

where E, > 0. Evidently the probability pb of finding a single match does not nearly 
exhaust the total probability PL of finding coincidences. This leads to the curious 
result that even the probability of finding three or more common elements in an 
independent series of draws made by S’ and 9 is not negligible, for 

P,:=1-(p;+p,:+p;)+* (N% 1). (2.10) 
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B. The Few Loop Principle 

The results of the “double birthday” lemma imply severe constraints on the 
behavior of the terminal loops of computer simulations of chaotic systems. To be 
specific, let us suppose that J”(X) is a uniform pseudorandom number generator that 
maps the unit interval onto itself; the piecewise linear mixing transformation 
M&)(x) = 12x - 11, x E [0, 11, is a simple example (cf. (A6)). Another type often 
encountered in practice is the RANDU algorithm [36]. If -Ir, is programmed to run 
on a machine that effectively operates with q digits to the base 10, then the accessible 
universe Jy of numbers in [0, 1 ] consists of 

N,= 104 + 1 (2.1 la) 

distinct fixed point displays including all the digit combinations ranging from 

0.0,0, ... 0, to 0.9,9, *a* 9,, and l.O,O, ..a O,-,. (2.11b) 

The computer may then be regarded as an “urn” containing the Nq distinct elements 
of the set Jlr which can be “drawn” or sequentially displayed by running the Mu 
program. In particular, we can start with a number 5 arbitrarily chosen from JV 
(2.1 lb) and form a sequence of pseudorandom numbers simply by iterating the 
program for calculating J”(&). Upon setting J@,J = 2,) M”(Zi) = f,, and so forth, 
we can rewrite the pseudorandom sequence (1.2) in the parallel form 

(2.12) 

The numbers indicated by the special symbols 2, and f, then represent elements with 
a dual significance. First of all, if the sequence {Zi} actually imitates random 
behavior, it must also simulate the “single birthday” situation: after approximately 
N”’ iterations it should then become likely that two elements, say xr and g,, 
reiresent the same computer display. Extensive numerical experiments with the 
Chebyshev mixing transform C, and its conjugate image &t2) confirm that the 
average running length I required for encountering a repetition is of the order of Ni”, 
in agreement with (2.7b). The pigeonhole principle also guarantees that some value of 
the index 1< Nq + 1 forces a repetition in the selection of the elements and ensures 
that the sequence (2.12) merges into a terminal loop. Both these aspects of J?~ and & 
are illustrated by the diagram in Fig. 2a. 

The constraints of the “double birthday” lemma appear when we repeat this 
procedure. Suppose we choose a different initial element, say Jo, from the set (2.11 b) 
and construct another pseudorandom sequence analogous to (2.12): 

(2.13) 
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b 

FIG. 2. (a) Flow network or de Bruijn diagram (20) for the pseudorandom sequence (2.12). The 
chain of points begins with the initial seed ,&, and eventually enters a terminal loop at &. There are I - f 
distinct points in the loop which form a cycle under the action of MU. According to a “single birthday” 
estimate [ 19, 351 the magnitude of I is approximately 1.2NyZ, where N, is the number of points in the 
computer universe (2.1 la). The diagram reflects the conventions adopted in (1.2) and (2.12): the 
elements 4 and 2, represent identical computer displays. (b) Flow networks for two pseudorandom 
sequences merging into disjoint terminal loops. Computer trials confirm that statistical tests for random 
behavior are satisfied on large loops, i.e., I-f z O(Nt”) s 1 [7, 19, 35). (c) Flow network for two 
pseudorandom sequences that join before entering the terminal loop. All elements beginning with D, are 

identical for both sequences (cf. (3.1)). (d) Flow network for two pseudorandom sequences with a 
common terminal loop. 

581/49/3-4 
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By convention the elements yf, and ~7~~ again represent identical computer displays 
-the object drawn twice from the urn -and as before, this repetition becomes likely 
when 1’ - Nil’. 

If the two pseudorandom sequences (ni) and {jjj} do not have any common 
elements, the corresponding computer runs will merge into different terminal loops as 
shown in Fig. 2b. The double birthday lemma, however, indicates that this is not the 
most favored situation. If one constructs many pairs of pseudorandom strings, like 
(2.12) and (2.13), each time beginning with numbers drawn from the set (2.1 lb), then 
the coincidence probability PL (2.la), (2.lb) implies that in about 67% of the cases 
the two sequences will merge. The corresponding flow diagrams are shown in Figs. 2c 
and 2d. Note that the two sequences may join either before or after they have entered 
a terminal loop. We shall say more about these possibilities in Section 4. 

By a slight extension of these arguments it is then possible to estimate the average 
number of terminal cycles associated with any uniform pseudorandom number 
generator -HU. Begin with the sequence (2.12), and consider the set 

.F = (2: M:(X) = .U, for some m > 0). (2.14) 

Here .2:‘ is one computer orbit of -dU ; it consists of all numbers in ,I’ which even- 
tually end up in the loop 5 ,..., X1-, by repeated application of AU. The explicit 
enumeration of all the preimages, or ancestor numbers, of the loop can be quite 
laborious (cf. Section 4). Suppose now that the loop j$,..., jj[,-, in (2.13) is not 
contained in Lg; this is the situation shown in Fig. 2b. We can then form its orbit $?, 
i.e., 

j? = {j? J:(J) = jf, for some m > 0). 

Note that 2 and 9 are disjoint. By continuing this procedure we can in principle 
identify all the terminal loops of MU on any particular computer Q and construct the 
associated orbits. The end result is a partition of all the computer displays J” (2.1 lb) 
among the various orbit sets, i.e., 

Jf-=~+p+~+ . . . . 

If there are r loops in all, and we imagine for convenience that each orbit is color 
coded-say all the f E 3 are “red” numbers, all the jr E p are “blue” numbers, and 
so on-then (2.16) is simply a summation over r distinct color sets. 

So now we can repeat the “double birthday” question with a new twist: Suppose 
that we choose any two numbers S; and S; from M and construct the pseudorandom 
strings A’:@,) and Af’(S;), where m, m’ = 1,2,3,... . Then clearly the probability 
p,(AU , @Y) that S; and S; belong to the same orbit of AU is given by 

P,(-<VW= [N&y 1>1-’ i %h- 119 (2.17) 
I=, 
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where n, is the number of elements in the tth orbit of MU. For any computer Q these 
weight factors n, can be found explicitly (Section 4). However, to expedite the 
arguments leading to the “few loop” estimate we introduce a plausible shortcut: 
assume that in first approximation every uniform pseudorandom algorithm A, 
generates an equipartition of the computer numbers JV among its orbit sets, i.e., 

n,zn,=:n,z=..=:n, z N,/t. (2.18) 

Indeed if there were some definite ranking of the orbit sizes, then the favored “colors” 
would represent a departure from random behavior (see below). Of course this ansatz 
ignores the presence of “small” orbits whose terminal states have comparatively few 
preimages. The multiplicity of these small orbits is discussed in [7, Sect. 51. Since in 
all practical cases N, + 1, Eqs. (2.17) and (2.18) imply that 

(2.19) 

independently of the pseudorandom algorithm MU and the computer Q. 
It is really not surprising that this matching probability p, differs from the coin- 

cidence probability Pk (2.lb) of the double birthday lemma; after all, the underlying 
combinatorial problems are quite different. Both problems, however, were deliberately 
set up to model the same physical situation-the confluence of pairs of 
pseudorandom sequences-and therefore we can reasonably expect that the two 
probabilities will be similar even if they are not identical. One way of ensuring this 
consistency is to require 

PA = 4 - l/r ‘v P,(A”, 5T), Nq% 1; (2.20) 

and clearly this implies that r cannot be a large number. The entire chain of argument 
can then be summarized by way of the following Few Loop Principle: 

Let ,MU be any uniform pseudorandom number algorithm programmed to 
run on a digital computer Q capable of N, @ 1) displays. Suppose that AU 
generates an approximate equipartition of N4 among its orbit sets. Then it is 
unlikely that 1” has more than three or four distinct orbits or terminal loops 
on P. 

Inasmuch as estimates expressed in terms of “likely” or “unlikely” hardly qualify 
as theorems, we shall refer to this conclusion as the few loop principle. If there is ever 
a need to find the actual probabilities for the confluence of more pseudorandom 
number strings, the combinatorics of the double birthday lemma can be extended and 
the few loop arguments upgraded to the level of a theorem. For instance, the analogue 
of (2.2) for the “triple” birthday lemma is 

q;,=N! c 
ijk 

i+J+kGN (N-i-j-k)!Ni+i+k+3’ (2.21) 
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where qi denotes the probability of not selecting any object in common in three 
independent series of draws each terminating in a repetition. It can be shown that 

1 
q;=TF-ii m - (1/45N) + O( l/N3’2), 

and this result is also consistent with the few loop principle [ 191. 

(2.22) 

All the available evidence from trials with a variety of machines, including 
programmable calculators, indicates that uniform mixing transformations like Ah(Z) 
and J&3, (cf. Appendix), as well as multiplicative congruence algorithms of the 
RANDU type (cf. [7, Table III]), have no more than three significant terminal 
cycles. One precaution which is essential for the computer experiments is that the 
capacity N, must be sufficiently large so that the randomizing action of the iterations 
is not throttled by combinatorial constraints. This point is discussed in detail in [7, 
Sect. 51. Furthermore [7, Table II(a)] shows that the three loop limit also appears in 
computer simulations of the quadratic Chebyshev polynomial C,, even though this is 
a nonuniform mixing transformation [S]. 

The few loop principle can be placed into a larger context. Suppose we consider 
the set 3 comprising all possible mappings of Nq (cf. (2.1 la)) into itself: evidently 
there are a total of N$J such mappings. It has been shown by Kruskal [37] and 
Harris [38] that if one selects a function at random from the set 3, then the mean 
number of terminal loops is of the order 

n(3) - i(ln N, + In 2 + Y), Ng%- 1, (2.23) 

where y = 0.577... is Euler’s constant. The weak dependence of n(J) on N, is already 
symptomatic of a “not very many loops” principle for computers of any practical 
size. Clearly, many of the mappings included in 3 correspond to ordered 
transpositions of the elements N, and therefore escape the restrictions of the double 
birthday lemma and other tests of pseudorandom behavior. The few loop principle 
appears if we narrow the choice of functions in 3 to those which simulate random 
number generators under iteration. 

Some of the combinatorial arguments leading to the few loop principle can be 
inverted to yield information on the orbit sizes n,, cf. (2.17). Suppose for example 
that we drop equipartition hypothesis (2.18) and instead assume that the uniform 
pseudorandom number generator -Av, has only two or three significant terminal loops. 
Then the results of the double and triple birthday lemmas, Eqs. (2.2) and (2.21), can 
be combined with combinatorial expressions such as (2.17) to derive constraints on 
the relative orbit sizes. One finds a considerable deviation from equipartition; both in 
the two and three loop cases about 80% of the computer numbers N, belong to a 
single orbit [ 19]! This trend is consistent with the limited statistical evidence 
available in [7, Tables II(a) and III]. 

Finally, the fact that pairs of random sequences can have unintuitively high coin- 
cidence probabilities is the basis of a well-known card trick. Some years ago 
M. Kruskal found a simple method for selecting sequences of cards from a shuffled 
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deck with the surprising property that the face value of the last card is insensitive to 
the choice of initial card with a probability of 80% [21]. It is conceivable that both 
the few loop principle and Kruskal’s algorithm are merely precursors of a large class 
of methods for forcing chaotic systems towards small sets of ordered final states. 

3. EXTENSIONS AND APPLICATIONS 

A. Memory Dependent Feedback 

The correspondence between urn drawing models and pseudorandom computer 
simulations breaks down at once if we consider multiple coincidences. This becomes 
evident if we recall the two pseudorandom sequences (2.12) and (2.13) and adjust the 
notation to show the confluence indicated in Fig. 2c. The pattern of iterations can 
then be written in the parallel form 

where the new symbol D, denotes the first common element. Clearly, if AU 
represents any state-determined algorithm, then the occurrence of even a single coin- 
cidence 

automatically ensures that all subsequent iterates follow a common track. In this case 
the idealization that the sequences {Xi}, i > n, and { jjj},j > n’, represent independent 
random drawings becomes nonsensical, and it is pointless to check whether the 
multiple coincidence probabilities (2.9) are satisfied. However, this kind of 
degeneracy is not an inherent limitation of deterministic simulations. One remedy 
which is easy to implement on computers is to scramble the regular iterative patterns 
of (3.1) with memory dependent feedback. Specifically, if we have arrived at the 
(n + 2)th term of the sequence {fi}), it is possible to associate a “memory” with the 
values of the preceding m terms by forming the product 

nt1 
n xi= Pm(fn+2)* 

n+2-m 
(3.3) 
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The iteration of any uniform pseudorandom algorithm MU can then be altered by 
adding increments proportional to p,& + & e.g., 

(3.4) 

where 6 is a constant that is adjusted to be small enough so that the perturbations do 
not spoil the statistical properties of the sequences [7]. 

This procedure can be used to postpone the lockstep situation shown in Fig. 2c 
and by Eq. (3.1). Since we have assumed that neither of the sequences {A?~), i,< n, nor 
(yi), j < n’, contains any repetitions or common elements, the two memory factors 
&,,&+J and GJ+,J~~,,+~), which enter into the computation of the terms beyond D,, 
will generally be different for m > 2. The pseudorandom iterations can then be 
rewritten in the form 

where it is evident that (CC)} and {Jj} usually diverge after the initial coincidence at 
%+I =Do=ynn+,. In particular if MU is a mixing transformation, the next terms, 
%I+2 and Y,,r+2, are likely to have quite different values--even if the perturbations are 
of the same order of magnitude, i.e., &,,,(.V,+J z 6p,(y-,.+ ,)-because it is known 
that mixing sequences are totally unstable [22]. When pseudorandom processes are 
scrambled by memory dependent feedback or the interleafing of mixing transforms, 
the resulting sequences should be sufficiently irregular so that multiple coincidences 
occur with the expected frequencies (2.9). 

Of course none of these modifications can sustain the computer randomizations 
indefinitely: the pigeonhole principle also applies to the sequences (3.5), so they must 
eventually merge into terminal loops; according to our previous arguments there 
should be no more than three or four of these. The only practical difference is that the 
memory dependence has made the computers appear to be larger. For instance, if 
each term of the sequence {n,} in (3.5) represents a q-digit number, cf. (2.1 la) and 
(2.1 lb), and the and term and 
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coincidence, the more likely it becomes that several elements on each string will 
resemble each other. When this “cross-matching” becomes sufficiently accurate so 
that the memory factors cannot distinguish any further differences, then the two 
sequences will finally enter a common track. 

B. Applications to Physics 

If for the moment we strip away the computer-oriented language of the preceding 
sections, we can restate the basic assumptions leading to the few loop principle as 
follows: 

(1) There is a system 9 which may appear in any one of a finite number of 
states Ci, i = l,..., N. 

(2) There is a transformation @I&) which can be applied to 9 in any of its 
states. This transform has two essential properties: 

(a) Transformation gPp(,,,) is deterministic in the sense that given any state 
Ci, the transform &,,) leads to a unique successor, i.e., 

d p(m) : ci + Cj[k P(m)]- 

(b) Transformation gp(,,,) depends on a stochastic parameter p(m). This 
means that if we extend (3.6) to a succession of transformations analogous to (2.12), 
i.e., 

the sequence of parameter values (p(i)} is random or pseudorandom. 

There are a variety of physical systems that appear to evolve according to this 
scheme, and whose long-time or asymptotic behavior is described by the few loop 
principle. We shall give a few illustrations-progressing from the literal to the 
speculative. 

A simple class of physical objects that have properties corresponding to. the Y- 
systems are Ewing arrays. These are well known classical models for cooperative 
magnetic interactions. Ewing arrays are usually constructed with sets of precisely 
magnetized permanent magnets, each mounted on a nearly frictionless vertical pivot 
and free to rotate in a horizontal plane without mutual mechanical obstruction. If the 
pivots are arranged in the form of a square lattice, then extensive observations show 
that the set of individual magnet orientations does not form an amorphous “spin 
glass,” but rather that the entire array exhibits a regular domain structure [23, 241. It 
is natural to identify these magnetic patterns with the Cj states of Eq. (3.6). 
Specifically, in a square array of s X s magnets, let us denote the orientation of the 
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magnet in the pth row and tih column by 0,,, 1 Q p, K Q s. Then the Cj’s simply 
represent a particular set of these orientations for any locally stable state, 

e,, , e,,,..., e,,, 8, ,,... , e,, - ci. (3.8) 

The number of distinct configurations (apart from degeneracies due to array rotation, 
pole reversal, etc.) is a rapidly increasing function of the total number of magnets. 
For instance in a 9 x 9 array, statistical estimates indicate that the total number of Cj 
states is in the range 104-105. 

It is known that the dominant magnetic interactions in these Ewing arrays are due 
to dipole and octupole forces [25]; therefore the potential energy Ej associated with 
each configuration Cj can be computed exactly. Since nearest-neighbor approx- 
imations are inadequate, these calculations must include all s2(s2 - 1)/2 pair-wise 
interactions. In particular, for a 9 x 9 array the energy of the anti-ferromagnetic state 
C AF + e,, z 0, e,, z 72 ,..., OBK z 71, e,, z 0, is given by 

E,,z(387.2 f 0.2)(p2/a3), (3.9) 

where a is the lattice spacing and p is the magnetic dipole moment of a single magnet 
[26]. Although C,, is presumably the lowest energy state of this system, it has a 
negligible statistical weight. Experimentally this can be verified by randomizing or 
“melting” the domain patterns with fluctuating external magnetic fields and then 
allowing the arrays to freeze or recrystallize by dissipating their kinetic energy in 
internal magnetic friction. The anti-ferromagnetic state never appears spontaneously 
from the melt. 

This “irrelevance” of the ground state is not surprising: One can check explicitly 
that most of the lo4 metastable Cj states are densely spaced in energy and grouped in 
degenerate clusters. Furthermore, the state-area or capture probability for each state 
is extremely small [27]. Under these circumstances equilibrium statistical mechanics 
is inapplicable. Nevertheless, Ewing arrays can be stabilized by procedures which 
mimic the shake-down of real structures-such as portal frames or pipelines-r the 
annealing of glassy materials. The existence of asymptotic sets of “attractor” states is 
then a direct consequence of the few loop principle. This connection can be 
demonstrated with the help of the following experiments [26]: 

Suppose a 9 x 9 array is “melted” and then allowed to congeal into a state Cr” 
-this is the analog of choosing an arbitrary starting element for the pseudorandom 
sequences (2.12) or (2.13). Now let us attempt to transform the system by selecting a 
particular magnet, say the p&h, turning it slowly by 360” (e,, -+ epK + 360”), and 
then releasing the magnet. If we have not supplied sufftcient energy to boost the 
system over the lowest saddle-point, or “activation-complex” [27], separating Cbr’ 
from some other locally stable state on the energy surface, then nothing will happen. 
We can indicate this by rewriting (3.6) in the form 

(3.10) 
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where gP-,. simply represents the rotation of the ptih magnet. Clearly, we can now go 
on to twist a sequence of magnets--p(2) ~(2), p(3) K(J), etc.-until we finally find 
one whose rotation results in a change of pattern. If this happens on the mth step, 
then 

q(m)rr(m) :cp + cy, (3.11) 

where C\” denotes the next pattern. This “twist and shift” procedure will correspond 
precisely to the general iterative scheme of (3.7) if the rotated magnets are selected by 
pseudorandom number generators. In this case the stochastic parameter p(m) 
represents a pair of (pseudo) random indices 

p(m) --t p(m) K(m), 1 < p, K < 9, m = 1, 2, 3 )... (3.12) 

specifying locations in the 9 x 9 array. 
One series of experiments was carried out by randomizing a 9 x 9 array ten times. 

After each “melt,” the array was allowed to freeze. In this way we obtained ten 
distinct initial contigurations Cb”, T= l,..., 10. Starting with each of these 
configurations we then prodded the array along a sequence of patterns in the Cj-space 
(1 < j ‘? 104) by turning randomly chosen magnets: 

Cb” + c’,” + c$” + . . . ) 

(3.13) 
Cb’O’ + CyO’ + go’ + . . . . 

It is striking that nine of these sequences merged into the same set of four final states 
after approximately 80-130 steps. These four states formed a cluster rather than a 
loop because the gPPK transforms can interconnect patterns in a variety of ways. But 
the physical situation in all essentials resembles the’ capture processes shown in 
Figs. 2c and d: once the array reaches this 4-cluster it cannot escape to any of the 
other Cj states by further magnet rotations. The average energy of this terminal 
cluster is (375.6 f 0.2),u2/a3, and all 4 states lie within 0.5% of this value. In other 
words, this set of attracting states is actually poised on a flat energy ledge about 
3.1% above the anti-ferromagnetic ground state (3.9), but it is not metastable in the 
usual sense of the word.’ It is suggestive that the average number of steps between 
the “melt” and this terminal cluster is of the order of the square root of the total 
number of Cj states (cf. (2.7a)). 

Finally we note that we also found a short sequence of 26 steps leading to a 2- 
cluster: this consisted of the ground state C,, and another pattern lying 1.7% higher 

I In this connection it is interesting to recall Bohr’s remarks on stability: “In Nature there is a general 
tendency to form certain structures . . . and if these are perturbed or destroyed, then they- are always 
recreated... All of this is certainly not self-evident; on the contrary it appears to be quite incomprehen- 
sible from the standpoint of Newtonian physics: By this I mean the presumption of a strict causal deter- 
minism of events . where every state is uniquely and solely determined by its immediate 
predecessor” (281. 



412 ERBER ET AL. 

in energy. The association of short sequences with small orbits conforms to the 
distributional analysis underlying (2.7a), (2.7~). Although we cannot rule out the 
existence of other attractive clusters, all the additional evidence available from simple 
variants of these experiments is consistent with the ordering behavior expected from 
the few loop principle [26]. 

The stochastic parameter p(m) of course need not be associated with random or 
pseudorandom processes in the simple and literal way indicated by Eq. (3.12). In the 
technically important case of hysteresis systems, this parameter may be identified 
with the random location of discontinuities in the phase spaces of these systems. The 
physical relevance of the few loop principle then is connected with the fact that 
nearly all hysteresis systems evolve from virgin to asymptotic hysteresis, and that the 
asymptotic regime is comprised of cycles over a relatively small number of states. 
These assertions can also be checked directly with Ewing arrays. 

A convenient method for generating hysteresis in Ewing arrays is to mount the 
magnet supports on deformable rhombohedral lattices [29, 301. In practice the vertex 
angle of the rhombuses is varied through the range 20” < $ Q 90”, where 90” 
corresponds to a square lattice. Most magnet orientations 0,, are then not single 
valued functions of 4. We can take this multiplicity into account by rewriting (3.8) in 
the form C,[0,,(#)], where the index j numbers all the locally stable magnet patterns 
for a given value of 4. As the hysteresis coordinate is cycled back and forth over the 
physically accessible range, 20” + 90” -+ 20”, the locally stable magnet patterns 
C,[0,,(#)] move along corresponding trajectories on a foliated energy surface. In a 
2 x 2 array there are essentially only two trajectories and the situation is sufficiently 
simple so that it can be shown graphically-for example, in [29, Fig. 5 1, However, 
the complexity of the hysteresis increases rapidly as the Ewing arrays are enlarged. 
For instance, a 6 x 6 array has at least 256 distinct trajectories linked together in the 
form of an intricate hysteresis network. An additional complication stems from the 
fact that as d is varied smoothly, there are discontinuous jumps from pattern to 
pattern. The hysteresis network of a 6 x 6 array has at least 1245 such jump discon- 
tinuities, or an average of 4.86 transitions per trajectory [31]. 

These jump discontinuities are responsible for the irreversible energy dissipation in 
hysteresis [29, 301, and are also useful for partitioning the hysteresis network into 
finite sets. Specifically, if we regard each continuous portion of every trajectory as a 
single state, then the associated set of C,[e,,(d)] patterns is discrete and finite. Since 
the cyclic variations of d also generate discrete jumps between these states, the 
correspondence between hysteresis and the general iterative scheme of (3.7) is almost 
complete. The random character of the hysteresis then depends on two supplementary 
conditions: 

(a) The distribution of jump discontinuities on the energy surfaces must be 
uniform but irregular. Statistical studies confirm that this condition is indeed satisfied 
by 6 x 6 arrays [3 11. 

(p) The sequence of states traversed during hysteresis should be dispersed 
throughout the entire hysteresis network. This kind of “mixing” criterion is more 
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difficult to check in practice, but it is consistent with the observed behavior of the 
arrays. 

With all this information at hand, it is now a straightforward matter to apply the 
few loop principle to the Ewing hysteresis. Specifically, for an N state system with an 
average of d discontinuities or transitions per hysteresis cycle, the estimate (2.7a) 
indicates that the total number of cycles required to reach asymptotic hysteresis is 

n asympt - (0.9NY21d 6x6 (0.9 x 1245)“2/(2 x 4.86) z 3.5. (3.14) 

The numerical values given in this example are derived from statistical trials with a 
6 x 6 array. Despite the fact that the 6 x 6 hysteresis network includes more than 
100 different loops, experiments showed that most arbitrarily chosen starting 
configurations merged into a unique terminal loop after only 2-4 hysteresis cycles. 
This surprising result is in full accord with the few loop estimate (3.14). Similar 
trends appear in the hysteresis of complex structures subjected to mechanical loading 
cycles [30]. In this case the determination of the technically important shakedown 
load is facilitated by the rapid evolution of virgin to asymptotic hysteresis [32]. The 
shakedown results are also consistent with a simple extension of (3.14). Suppose that 
the amplitude of the hysteresis excursions were lowered by a fractional amount p’ 
(0 < p’< 1): if the hysteresis over this restricted subspace retains its random 
character, then (3.14) implies that the approach to the asymptotic states requires 
more cycles, i.e., nasympt - b-“2. 

The magnetic hysteresis of Ewing arrays and the mechanical hysteresis of struc- 
tural panels can become extremely complex, yet both types of systems are basically 
determinate. It is therefore not at all obvious why the few loop principle should have 
any more than a fortuitous connection with the description of their behavior. In 
particular, for the Ewing arrays, we can check in detail that the randomness criteria 
(a) and (/I) happen to be satisfied, but we do not have any basis for asserting 
beforehand that the location of the discontinuities-which can all be obtained from 
classical magnetostatics [29]-will turn out to be uniformly distributed over the 
hysteresis energy surface. In essence this problem is an echo of our previous 
discussion of what makes a string of numbers random or pseudorandom, cf. 
Section 2A. According to Kolmogorov and Chaitin, the generation of random 
numbers requires tremendous computational complexity [ 141, i.e., 

random 
maximal algorithms of 

strings 
-+ information -+ irreducible 

content complexity. 
(3.15) 

Obviously it is possible to extend these equivalences to include physical systems if we 
recall that complicated physical systems generally require complicated computer 
programs to describe their behavior. It is then plausible to read Kolmogorov-Chaitin 
in reverse order, 
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complex complex maximal 
physical + computational + information + 

pseudorandom 

systems algorithms content 
strings. 

(3.16) 

This does not mean that all complicated systems behave like fluids, spin glasses, or 
roulette wheels; but the Ewing example clearly shows that in the midst of ordered 
patterns there may be at least one variable with a pseudorandom distribution. 
Physical processes which correspond to iterations of this special variable should lead 
to small sets of asymptotic attractor states in accordance with the few loop principle. 

C. Terminal Loops on D@erent Computers 

The few loop principle is a nonconstructive statement concerning the existence of 
terminal cycles. Different pseudorandom algorithms programmed for the same 
computer and ostensibly the same algorithm run on different computers will generally 
lead to different sets of terminal cycles. The dependence of these cycles on the trun- 
cation conventions and programming of various machines has been studied with the 
aid of variable precision simulations [7]. For instance, if the Chebyshev mixing 
transformation C,(x) =x2 - 2 is iterated in 3 place accuracy on programmable 
calculators such as an HP-25 (10 digits + 1 guard) or an SIX-52 (10 digits + 
3 guard), then the same terminal loops appear on both machines. This example is 
trivial, however, because the statistical features of the mixing are suppressed by the 
combinatorial regularities arising from the underlying arithmetic “lattice.” In the 
Chebyshev case, the randomization of the mixing begins to dominate the iterations 
when the computations are carried out with more than 6 significant figures. Beyond 
the transition to this statistical regime the terminal loops also become device- 
dependent; cf. [7, Tables V-VII]. 

Since mixing transformations are not only chaotic but totally unstable, the 
sensitive dependence of the terminal loops on the truncation conventions and 
microprograms is quite natural. In principle this feature is useful for adapting mixing 
transformations to cryptographic purposes. In this context any “key” which can 
convert lengthy ciphertext into intelligible plaintext represents an enormous amount 
of information compression. The few loop principle indicates that keys of this type 
can be constructed for cryptosystems based on uniform mixing algorithms. 
Specifically, given a computer %Y together with its truncation algorithms and a mixing 
transformation. dv, all that one needs in order to reconstruct completely the entire set 
of orbits (2.16) is one number from each terminal loop. Our estimates show that all 
of this information is usually provided by just 2 to 4 numbers! 

4. THE RECONSTRUCTION OF ORBITS 

Suppose that the transformation A is mixing on the interval I with respect to 
Lebesgue measure. Then for all elements x0 E I-except for those drawn from a set of 



UNAVOIDABLE ORDER 415 

measure zero-the sequences of iterates (Mm(xO)} will extend indefinitely far into the 
“future” in a perpetual pseudorandom wandering. If, however, I is mapped into a 
finite set (e.g., the set of computer displays JV (2.1 la), (2.1 lb)) by some truncation 
procedure, then the initial elements x, will be replaced by the machine entries TO, and 
the computer sequences (JP(Y,,)} will terminate as indicated in (1.2). In this 
situation the pigeonhole and few loop principles ensure that the “future” will not be 
pseudorandom: all the machine simulations are bound to terminate on a relatively 
small set of ordered states. 

A complementary ordering appears if the computer sequences are traced back into 
the “past.” In this event the gaps between the various processes shown in (1.1) can 
become even more drastic. For instance, the “past” of a mixing transformation may 
be inaccessible; this follows from the 

THEOREM [33]. It is impossible for any one-dimensional transformation to be 
simultaneously continuous, mixing, and invertible. 

Since on physical grounds it is preferable to idealize mixing transformations as 
being continuous, this theorem shows that the corresponding physical processes must 
be irreversible [2, 221. 

The asymmetry between past and future appears in a somewhat different form in 
discrete models of mixing. For example, the continuous Chebyshev transformation 
C,(x) = x2 - 2 is noninvertible, but as indicated by (1.3) all preimages of any given 
point can in principle be determined. This suggests that the numerical reversions 

x-, = + (To + 2)“2 
2 

x0 (4.1) 
J 

-2 _, = -(if0 + 2)“2 

could actually be carried out on a computer because there are only a finite number of 
machine entries 5. By continuing these reversions into the “past” it should then be 
possible to compile an inventory of all iteration sequences leading to a particular 
elements X0. This still does not permit us, however, to retrodict the pseudorandom 
sequences that include X0 because we lack a definite rule for selecting a unique 
preimage at each step back in time. 

The nonrandom features of the past can be studied by tracing every element of all 
terminal loops backwards in time. In particular, if we follow the iterative scheme 
(1.3) for g steps, every element should have approximately 2g distinct preimages. 
From (1.2) and the few loop principle we then infer that the total number of 
“ancestors” up to the gth generation is of the order of -4(n, - n/) 2g. Since (2.7a) 
indicates that the average number of generations is proportional to N”*, where N is 
the total number of computer displays, it would appear that the number of preimages 
must be enormous. In fact, however, this estimate is self-contradictory: If the 
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preimages are included among the set of computer displays, then evidently they 
would have to satisfy the bound 

N”’ In 2 < In N, (4.2) 

and this is impossible. The flaw of the argument lies in the presumption that the 
preimage chain (1.3) can be simulated on a computer [7]. It is easy to check that for 
any digital device the limited accuracy of the machine arithmetic entails the existence 
of gaps so that numerical reversions such as (4.1) may not be feasible. Suppose for 
example that we set Y,, = 1.823 645 3. Then on an electronic “slide rule” such as the 
TI-30 the operations indicated in (4.1) will result in +K, = f 1.955 414 4. However, 
if we go forward in time by computing C?(&$.. ,), we find 

(X-,)x(2-,)-2=1.8236455#&; (4.3) 

and a little further experimentation will show that no matter how K, is varied it is 
impossible to recover 5. In this precise sense &, does not have any ancestors on the 
TI-30. A similar thinning out prevails on larger machines. Quite generally, estimates 
of the maximum number of preimages must be modified by some extinction factor in 
order to avoid contradictions like (4.2). This extinction factor degrades the 
pseudorandom behavior of the computer simulations when they are extended into the 
past. 

The extinction factor for C,(X) can be determined explicitly for arbitrarily large but 
finite machines. Suppose that the arithmetic precision is A. Then for the neighboring 
pair, X0 and Y,, + A, reversion (4.1) can be written in the parallel form 

(x,+A+2)“*+Xo+A A 
(To + 2)“* -q I ’ (4.4) 

where 6 is the difference between adjacent preimages. Clearly, if 6 > A, it is likely 
that %,, will have preimages among the set of computer displays. On the other hand, if 

o”Lpf.p.m I 1. ~~. -1 
-L ir 2 

FIG. 3. Preimages of the Chebyshev mixing transformation XF-+ x’ - 2, XE [-2, 21. The ordinate 
indicates the percentage of points that have preimages. The curve is not a plot of (4.5). but represents the 
results of computer trials with N = 400,001 displays, and bin widths of 0.01. 
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6 < A, then the arithmetic mesh is too coarse, and it is likely that 5 will not have any 
ancestors. Since the ratio S/A is proportional to the fraction of elements that have 
preimages, (4.4) implies that this factor is given by 

f(-f) = 1, if -2<f<-;, 

=i(f+2)-I’*, if --i<n<2. (4.5) 

Figure 3 shows an approximate form of this function derived from an experimental 
“ancestor hunt.” By averaging (4.5) over the mixing interval [-2,2], it is easy to 
check that the average number of preimages per element is i instead of 2. This rapid 
extinction of ancestral lines avoids the contradictions represented by (4.2). It is then 
also feasible to associate an “age” with the simulations by starting the clock or the 
calendar with the oldest ancestor, i.e., the longest string of reversions. Finally, we 
note that the statistical differences arising from the asymmetric distribution (4.5) and 
the symmetric Chebyshev density [4 - x’] - “* of (A2) provide a definite direction 
for time’s arrow in computer simulations of Chebyshev “chaos.” 

APPENDIX: UNIFORM MIXING TRANSFORMATIONS 

Computer trials indicate that mixing transformations can be employed as practical 
random number generators [7]. For instance, if I, is the interval [-2, 21, then the 
Chebyshev polynomials 

C,(x) = 2 cos[m cos-‘(x/2)], in > 2, principal cos-‘, (AlI 

are mixing on I, with respect to the probability measure 

p,(s) = +ls (4 - x’) - “’ dx. 

In many applications it is necessary to construct pseudorandom number generators 
with preassigned distributions over given intervals. Mixing simulations can often be 
adjusted to produce pseudorandom sequences with the desired properties by means of 
conjugacy transformations. In particular, if we want to modify the Chebyshev 
polynomial C, to generate a uniform distribution over [0, I], then it can be shown 
that the mixing transformation 

4(m)(x) = (Fc o cm o F,‘)(x) (A3) 

has this property [9, 341. Here “0” indicates functional composition; F, is the 
distribution function of P,, i.e., 

F,(x) = (l/n) cos -‘(-x/2), XE [-2,2]; (‘44) 
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and F; ’ denotes the inverse, 

F;‘(x) = -2 cos(m), 

Two special cases of (A3) are 

and 

.~~&) = I 1 - 2x1, 

-4(3,(X) = 3x9 
= 2 - 3x, 

= 3x - 2, 

x E [O, 11. W) 

x E [O, 1 I, 646) 

if 05$x<+, 
if ;<x<5, (A7) 
if $<X< 1. 

Both .kjj(zj and J&, perform well on computers, but precautions are necessary. For 
instance, on a machine operating in binary arithmetic, Mh,,, will eventually collapse 
to $ upon iteration. 
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